

Wetter und Luftschadstoffe in Bern im September 2025

Messwerte Station Bern Morgartenstrasse

Inhalt

1	Das Wetter in Bern im September 2025	3
2	Die Luftschadstoffe in Bern im September 2025	5
	Messwerte Station Morgartenstrasse	5
	Stickstoffdioxid (NO ₂)	5
	Ozon (O ₃)	6
	Feinstaub PM10	7
	Feinstaub PM2.5	8

Wir verzeichnen einen Messausfall vom 17. - 18.9.25 und am 30.9.25. Die Messabdeckung von mindestens 80% für alle Messgrössen für den September 2025 ist gewährleistet.

Bericht als PDF verfügbar unter www.bern.ch/luft ⇒Downloads

Herausgeberin: Direktion für Sicherheit, Umwelt und Energie, Amt für Umweltschutz,

Morgartenstrasse 2a, 3014 Bern, Telefon 031 321 63 06, umweltschutz@bern.ch,

www.bern.ch/umweltschutz ● Bericht: Jolanda Winkler, Luftimmissionen ● Bern, im Oktober 2025

1 Das Wetter in Bern im September 2025

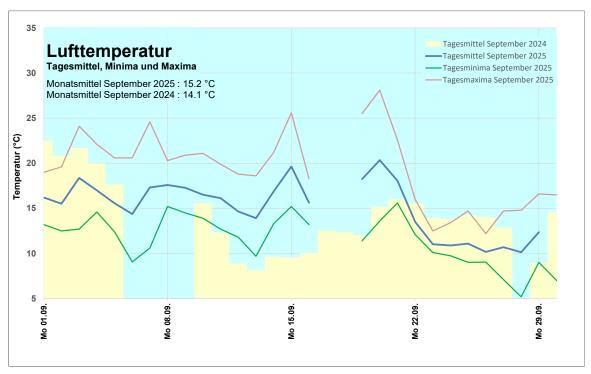


Abbildung 1: Lufttemperatur Bern Morgartenstrasse September 2025

Abbildung 2: Strahlungsintensität, Bern Morgartenstrasse, September 2025

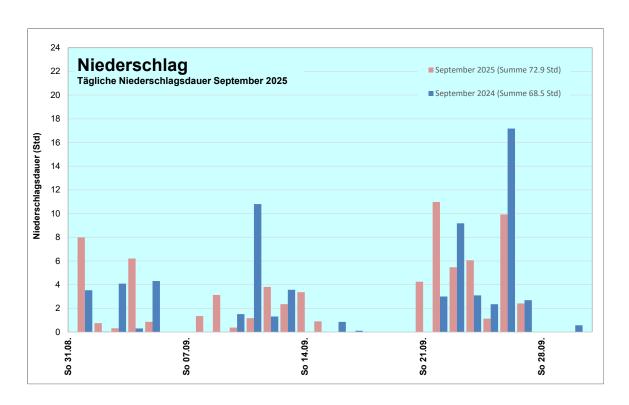


Abbildung 3: Niederschlag, Bern Morgartenstrasse, September 2025

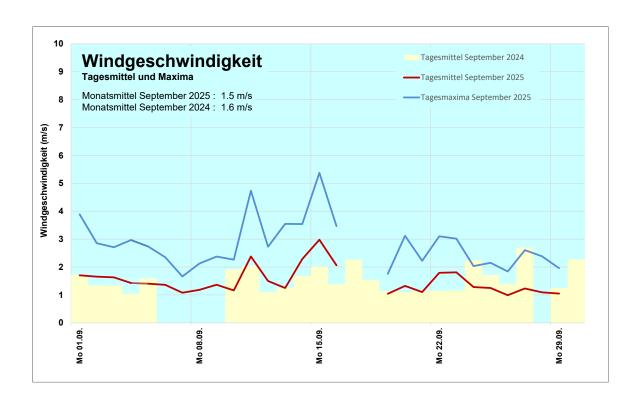


Abbildung 4: Windgeschwindigkeit, Bern Morgartenstrasse, September 2025

2 Die Luftschadstoffe in Bern im September 2025

Messwerte Station Morgartenstrasse

Stickstoffdioxid (NO₂)

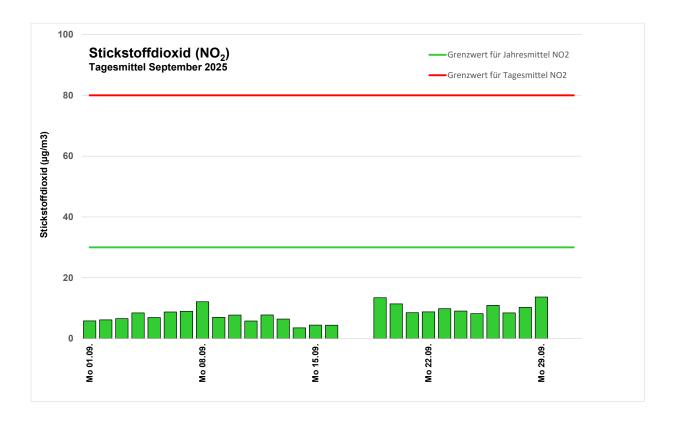


Abbildung 5: Stickstoffdioxid (NO2), Bern Morgartenstrasse, Tagesmittel September 2025

Der Grenzwert für das NO₂-Tagesmittel von 80 μg/m³ wurde im Monat September nicht überschritten.

Das NO₂-Monatsmittel lag mit 8.5 $\mu g/m^3$ unter dem Grenzwert für das Jahresmittel von 30 $\mu g/m^3$.

Achtung: Der Vergleich von Monatsmitteln mit einem Jahresmittelgrenzwert dient nur zur Orientierung. Zur Beurteilung von Jahresmittel-Grenzwertüberschreitungen darf nur ein Jahresmittelwert verwendet werden.

Ozon (O₃)

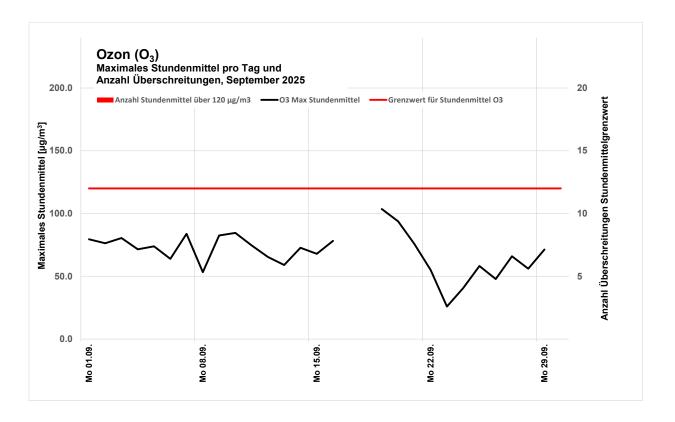


Abbildung 6: Ozon, Bern Morgartenstrasse, maximales Stundenmittel pro Tag und Anzahl Überschreitungen, September 2025

Der Grenzwert für Stundenmittel von 120 $\mu g/m^3$ wurde im Monat September nicht überschritten. Seit Jahresbeginn liegen 232 Stundenmittel darüber. Erlaubt ist eine Überschreitung pro Jahr.

Der Grenzwert für den 98%-Pegel eines Monats von 100 µg/m³ wurde im Berichtsmonat mit 83.9 µg/m³ nicht überschritten.

Erklärung 98%-Pegel-Grenzwert eines Monats:

98% aller gemessenen **Halb**stundenmittel eines Monats müssen sich unter 100 $\mu g/m^3$ befinden, ansonsten ist der Grenzwert überschritten.

Der Grenzwert von 120 μ g/m³ bezieht sich, anders als der 98%-Pegel, auf Ozon-**Stunden**mittel, die aus Halbstundenmitteln berechnet werden.

Feinstaub PM10

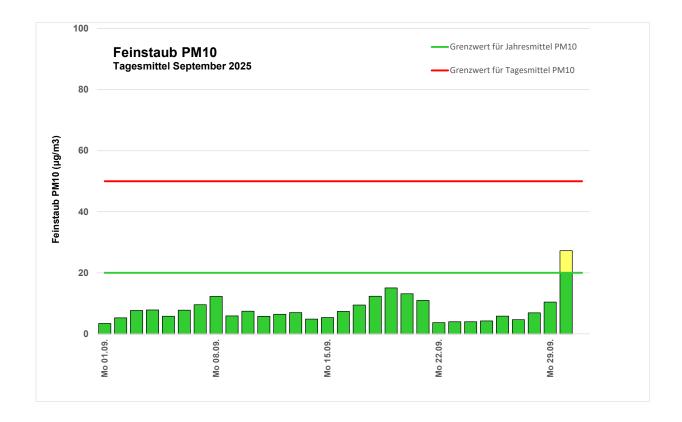


Abbildung 7: Feinstaub PM10, Bern Morgartenstrasse, Tagesmittel September 2025

Der Grenzwert für das PM10-Tagesmittel von 50 µg/m³ wurde im Monat September nicht überschritten. Dieser Grenzwert wurde seit dem laufenden Jahr noch nie überschritten. Erlaubt sind drei Überschreitungen pro Jahr.

Das Monatsmittel lag mit 8 μ g/m³ unter dem Grenzwert für das Jahresmittel von 20 μ g/m³.

Achtung: Der Vergleich von Monatsmitteln mit einem Jahresmittelgrenzwert dient nur zur Orientierung. Zur Beurteilung von Jahresmittel-Grenzwertüberschreitungen darf nur ein Jahresmittelwert verwendet werden.

Feinstaub PM2.5

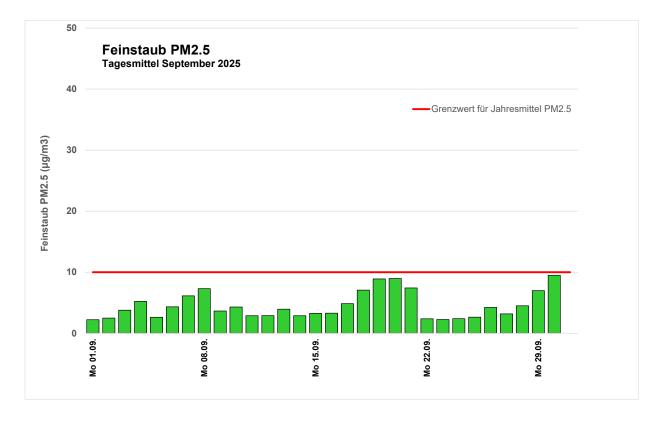


Abbildung 8: Feinstaub PM2.5, Bern Morgartenstrasse, Tagesmittel September 2025

Zur Orientierung sind in der Grafik Werte, die über dem Jahresmittelgrenzwert liegen, gelb gekennzeichnet. Zur Beurteilung der Grenzwert-Überschreitungen darf jedoch nur ein Jahresmittelwert herangezogen werden.

Das Monatsmittel für PM2.5 betrug im September 4.5 $\mu g/m^3$. Dieser Wert liegt unter dem Grenzwert für das Jahresmittel von 10 $\mu g/m^3$.